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ABSTRACT

A mumply-mlpported rigid plate to spati
: e ally correl o g
{.: —:1-‘1- 1 5 ;’ : e atEd ‘['Olln(l E,r
anal)'SCd- Quqt:q;ufntlCti.;;jwl};n-:n:-c and total structural responses ar% Calmmgxpﬁdltahgp& a,r.«i
gmund motion assump S are: general case, neglecting phase shifts ne \ecr,'dn' ~ 11 -
and neglecting propagation effects (single input). The results 11regcoml g Ldﬁlefsenﬂy
X C pared. ome

|0sSES .
| conclusions ON structural responses -
genera % to correlated multiple ground excitations are

drawil.

INTRODUCTION

structures, such as bridges, pipelines, will be aft :
) . ) | ; affected b round motion
Th(‘f dprtcjlpertles of ground motion propagation have been ystt%died ba.sedlon
recorde ata at a high density earthquake accelerometer array, SMART-1.

se studies, Harichandran and Vanmarcke (1984) proposed a one-dimensional
odel. Hao, et al. (1989) proposed a two-dimensional coherency model.
Using the coherency model (Harichandran and Vanmarcke 1984), Harichandran and Wang
(1988; 1990) calculated the responses of a single-span beam and a double-span beam
to spatially correlated multiple excitations. Zerva (1990) calculated the responses of a
continuous beam using an assumed coherency model. Using the coherency model (Hao,
ot al. 1989), Hao (1991) analysed a two-dimensional multiply-supported rigid plate to

multiple excitations by assuming the ground motion propagating along = direction, Fig.
1. Hao (1989) also 51mt}lated spatially correlated ground motion time histories based on
the both one- and two-dimensional coherency models mentioned above, and calculated the

_structura,l response time histories by using ltiple
inputs.

large
rop&g&tion.
fhe actual
Among tho
coherency I

those simulated ground motions as mu

In this paper, a multiply-supported rigid plate to multiple excitations 18 analysed.
The two-dimensional coherency model (Hao, et al. 1989) 1s used. The ground motion

propagation direction 1Is arbitrary. Qua,si-sta,tic, dynamic and total :
Case 1, multiple inputs with

are calculated. Three cases of ground motion inputs are:
inputs with coherency losses

both phase shifts and coherency losses, Case 2, multiple
The results from these three

only, and Case 3, multiple 1nputs with phase shifts only. _
! Its from single input. The normalized

cases are normalized by the corresponding resu . :
results are compared. Some general conclusions on the offects of multiple inputs OF

structural responses are obtained.
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chore ™ IS lumped mass, [ is polar moment of inertia, k is column stiffness, d 1s

structural dIMENSION, and v;r, v;, are the ground displacement in z and y directions
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STOCHASTIC RESPONSE FORMULATION

s

Assume ground motion propagating along 7 direction, Fig. 1, then ground motions
.. 7 and y directions can be considered statistically independent and the power spectral
1onsity functions ol ground motions in ¥y direction are approximately 0.7 of those In

el

. &irection (Penzien and Watabe 1975).

Ground accelerations in z and y directions can be obtained by transiormation,

1

(13)
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here o is the angle between r and I axes, -nd is defined as the ground motion
ncident angle

By some tedious but otherwise straightforward derivation, the p_owgr spectral
density function of the quasi-static responses in r direction can be obtained as

§ous(@) = — | Hy(i@) |* So(@)RT=(@: dks> i) (14)

- : T - 3 . » direction, 1t
where RT.(o.d.,,d,) is a factor function for translational responses 1K
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NUMERICAL RESULTS
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% 10 LI¢,J|¢4];LLi¢;I|;L| responses 18 either 0V or 00" . But the critical a to r:;t;lijtm;:;xl
responses depends on the coherency properties. Fig. 5 shows the omparisons between
the tota responses from the ground motions with different incident angles a. 1t can

he seel that all the responses, 1“H(‘4*11L rotational a« f{*\f?[;tti{,llhj are reduced if o ;{ ()

For ff?L?tLi"ll;Ll accelerations, the total responses vary with the incident angles.

CONCLUSIONS

Single mput representations of the ground motions always overestimate translational
responses but underestimate rotational responses. By considering the ground motion phase
shifts nnly, structural responses are sometimes overestimated and sometimes anderestimated.
By considering y_';rmiml motion coherency loss effects only, translational responses are
sverestimated and rotational responses are underestimated. The ground motion incident
angles also affect structural responses. ‘T'he total responses are gnmwmlly reduced by a
non Zero incident il.n}_','li‘ except for the responses of rotational accelerations.
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